
Appendix for the VADMBC R Workshop

So much to cover, so little time. See also http://dataservices.gmu.edu/software/r/

Data Frames

Fine-tuning import
Here are some arguments that are useful for
modifying data when you are reading it in.

mydata <- read.csv("titanic.csv",
 as.is = "name",
 stringsAsFactors= FALSE ,
 na.strings = "99"
)

Making factors
If you have a numeric variable, you can easily make
a factor. For example, if pclass were just 1, 2, 3:

mydata$pclass.f <- factor(mydata$pclass,
 levels = c(1,2,3),
 labels = c("1st Class", "2nd Class", "3rd Class"),
 ordered = TRUE
)

Changing labels
If you were to want to change the factor labels:

labels(mydata$gender) <- c("Males", "Females")

Formula Notation
object <- goal(formula , data = mydata)

~ predicted from + include
: interaction * factorial

In the below examples, X, Y, and Z are the names of
variables in mydata .

Statistical Equation R Formula

Yi = β0 + β1Xi + εI Y ~ X

Yi = β0 + β1Xi + β2Zi + εI Y ~ X + Z

Yi = β0 + β1Xi + β2Zi + β3XiZi + εI Y ~ X + Z + X:Z

 or Y ~ X * Z

Creating Data for Tutorials
Many tutorials create data in order to show how
functions work. Here are some ways this is done.

Use Vectors
It is very common to use vectors as variables
without making them into a dataframe.

 A <- c(1,2,3,4,5)
 B <- c(7:20, 200)
 t.test(A,B)

Nesting
Everything in R can be “nested” and it can be very
confusing to have several functions within other
functions. This is identical to using Vectors.

 t.test(1:10, c(7:20, 200))

Make a Dataframe
It is easy to turn vectors into data.frames.

 group <- 1:2
 value <- rnorm(20)
 data <- data.frame(group, value)
 t.test(value ~ group, data=data)

Notice that t.test will accept two vectors of data or
a formula. Formulas are better if one variable is the
grouping variable and the other has values. Some
will wrongly use vectors in this situation. Here are
two ways to get the data for group 1, both are ugly.
 data[data["group"]==1,2]
 data$value[data$group==1]

Use Included Dataset
R comes with many datasets that are often used in
examples, including iris and sleep. Many packages
also include datasets that are used for examples.
List installed datasets with: ??datasets

 t.test(extra ~ group, data = sleep)

http://dataservices.gmu.edu/software/r/

Creating Functions
Functions are objects, just like everything else. Here
are two simple functions you can make quickly.

square <- function (z) z*z
square(5)

raise.to <- function (q , n = 3) { q^n }
raise.to(5, 2) n= # 4^2
raise.to(5) # 4^3, because 3 is default
raise.to(5, 4) # 4^4; 2nd arg is n if not named

Bare Words that are NOT Objects

TRUE or T NaN (Not a Number) Inf (Infinity)
FALSE or F NA (Not Available) NULL (Empty)

NA – Not Available
R uses NA to represent missing values. However,
many functions result in NA when any of the values
are missing. The argument “na.rm” (rm = remove)
is typically available and can be set to TRUE.

> ages <- mydata$age
> mean(ages)
[1] 43.76827
> ages[ages==99] <- NA
> mean(ages)
[1] NA
> mean(ages, na.rm = TRUE)
[1] 29.88114

NULL - Empty
To delete objects, use the rm() function. To remove
variables in data.frames, set the value(s) to NULL.

> mydata$age <- ages
> rm(ages)
> mydata$embarked <- NULL

Piping & Chaining
Here is a situation where using the pipe operator is
especially useful: creating a pivot table. The dplyr
and tidyr packages work great with chaining.

library(dplyr)
library(tidyr)
mydata %>% group_by(pclass, gender) %>%
 summarize(pct = mean(survived)) %>%
 spread(gender, pct)

R/CRAN Package Help Page
Documentation includes the Reference Manual and
Vignettes. Go to the URL listed as it may also have
more information. Note the Published date and
Author/Maintainer to help identify good packages.
The packages in Imports will also be installed.

RStudio Keyboard Shortcuts
Action Windows MacOS

Insert assignment operator: <- Alt+- Option+-
Move Lines Up/Down Alt+Up/Down Option+Up/Down
Run current line/selection (retain cursor position) Alt+Enter Option+Enter
Run the current line/selection (move to next line) Ctrl+Enter Cmd+Enter
Attempt Code Completion Tab or Ctrl+Space Tab or Cmd+Space
Jump to Matching Brace/Paren Ctrl+P Cmd+P
Comment/uncomment current line/selection Ctrl+Shift+C Cmd+Shift+C
Insert pipe operator: %>% Ctrl+Shift+M Cmd+Shift+M

	Data Frames
	Fine-tuning import
	Making factors
	Changing labels

	Formula Notation
	Creating Data for Tutorials
	Use Vectors
	Nesting
	Make a Dataframe
	Use Included Dataset

	Creating Functions
	Bare Words that are NOT Objects
	NA – Not Available
	NULL - Empty

	Piping & Chaining
	R/CRAN Package Help Page
	RStudio Keyboard Shortcuts

